Using In-situ Techniques to Probe High Temperature Reactions: Thermochemical Cycles for the Production of Synthetic Fuels from Co2 Andwater
نویسندگان
چکیده
Ferrites are promising materials for enabling solar-thermochemical cycles. Such cycles utilize solar-thermal energy to reduce the metal oxide, which is then re-oxidized by H2O or CO2, producing H2 or CO, respectively. Mixing ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves their cyclability. In order to understand this system, we have studied the behavior of iron oxide/8YSZ (8 mol-% Y2O3 in ZrO2) using in situ X-ray diffraction and thermogravimetric analysis at temperatures up to 1500 °C and under controlled atmosphere. The solubility of iron oxide in 8YSZ measured by XRD at room temperature was 9.4 mol-% Fe. The solubility increased to at least 10.4 mol-% Fe when heated between 800 and 1000 °C under inert atmosphere. Furthermore iron was found to migrate in and out of the 8YSZ phase as the temperature and oxidation state of the iron changed. In samples containing > 9.4 mol-% Fe, stepwise heating to 1400 °C under helium caused reduction of Fe2O3 to Fe3O4 to FeO. Exposure of the FeO-containing material to CO2 at 1100 °C re-oxidized FeO to Fe3O4 with evolution of CO. Thermogravimetric analysis during thermochemical cycling of materials with a range of iron contents showed that samples with mostly dissolved iron utilized a greater proportion of the iron atoms present than did samples possessing a greater fraction of un-dissolved iron oxides. INTRODUCTION The primary goal of this work is to lay the foundation to enable the synthesis of hydrocarbon fuels from CO2 and H2O using concentrated solar power as a heat source to drive a two-step solar-thermochemical cycle. This process can be described as a way to re-energize CO2 and H2O, which are the thermodynamically stable products of hydrocarbon combustion (Figure 1A). Once CO2 and H2O have been re-energized (reduced) to CO and H2, traditional syngas chemistry can be applied to convert these products into hydrocarbon fuels. Solar-driven two-step ferrite (e.g., Fe3O4) thermochemical cycles are promising as a method for producing H2 and CO via H2Oand CO2-splitting, (Steinfeld, 2005; Kodama, 2003; Miller, 2007; Kodama et al., 2007; Miller et al., 2007), as illustrated in simplified form in Figure 1B. The basic cycles consist of a thermal reduction step (TR; reaction (1)) in which solar thermal energy reduces Fe to Fe, i.e., spinel transforms to wüstite, followed by a water-splitting step (WS; reaction (2)), or carbon dioxide-splitting step (CDS; reaction 3) wherein the ferrite spinel is regenerated: Fe3O4 → 3FeO + 0.5 O2 (1) 3FeO + H2O → Fe3O4 + H2 (2) 3FeO + CO2 → Fe3O4 + CO (3) Nakamura (1977) first proposed a two-step thermochemical cycle for hydrogen production from water using un-supported iron oxide, however, hydrogen production using the bulk iron oxides is not practical since the TR requires temperatures in excess of the melting point for significant 36
منابع مشابه
Upgrading of Pyrolysis Bio-oil: A Review
The increase in the population of the planet and the rapid economic growth and, consequently, the high consumption of energy has created many environmental problems in the globe. Due to these reasons and the lack of renewability of these fossil fuels, there has been a steep trend towards the production of renewable fuels from natural sources, one of which is the production of energy from biomas...
متن کاملReview of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
This article provides a comprehensive overview of the work to date on the two‑step solar H₂O and/or CO₂ splitting thermochemical cycles with Zn/ZnO redox reactions to produce H₂ and/or CO, i.e., synthesis gas-the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1) The endothermic dissociation of ZnO to Zn and O₂ using concentrated solar energy as the source for ...
متن کاملSimultaneous high hydrogen content-synthesis gas production and in-situ CO2 removal via sorption-enhanced reaction process: modeling, sensitivity analysis and multi-objective optimization using NSGA-II algorithm
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimens...
متن کاملSolar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor
Splitting CO2 with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy losses and severe material stresses. Here, we experimentally demonstrate for the first time the si...
متن کاملModelling of solar thermochemical reaction systems
This article reviews the progress, challenges and opportunities in numerical modelling of thermal transport, thermochemical reactions and thermomechanics in high-temperature solar thermochemical systems. Continuum-scale models are presented in mathematical detail while highlighting the literature that uses them. The discussion is enhanced by selected examples of numerical studies of solar therm...
متن کامل